CURRENT ELECTRICITRY PRACTICE PROBLEMS

Use your understanding of the mathematical relationship between work, potential energy, charge and electric potential difference to complete the following statements 1 -7:

 $\Delta \mathbf{V} = \Delta \mathbf{P} \mathbf{E} / \mathbf{Q}$

$\Delta \mathbf{PE} = \Delta \mathbf{V} \cdot \mathbf{Q}$

 $\mathbf{Q} = \Delta \mathbf{P} \mathbf{E} / \Delta \mathbf{V}$

 $\Lambda \mathbf{V} = \mathbf{P} / \mathbf{I}$

- 1. A 9-volt battery will increase the potential energy of 1 coulomb of charge by _____ joules.
- 2. A 9-volt battery will increase the potential energy of 2 coulombs of charge by _____ joules.
- 3. A 9-volt battery will increase the potential energy of 0.5 coulombs of charge by _____ joules.
- 4. A ____volt battery will increase the potential energy of 3 coulombs of charge by 18 joules.
- 5. A ____volt battery will increase the potential energy of 2 coulombs of charge by 3 joules.
- 6. A 1.5 volt battery will increase the potential energy of _____ coulombs of charge by 0.75 joules.
- 7. A 12 volt battery will increase the potential energy of _____ coulombs of charge by 6 joules.

Use the diagram below to answer question 8 - 13.

I = O / t

- $\mathbf{Q} = \mathbf{I} \cdot \mathbf{t}$ t = O / I8. A current of one ampere is a flow of charge at the rate of _____ coulomb per second.
- 9. When a charge of 8 C flows past any point along a circuit in 2 seconds, the current is ______ A.
- 10. If 5 C of charge flow past point A (diagram at right) in 10 seconds, then the current is ______ A.
- 11. If the current at point D is 2.0 A, then _____ C of charge flow past point D in 10 seconds.
- 12. If 12 C of charge flow past point A in 3 seconds, then 8 C of charge will flow past point E in _____ seconds.
- 13. True or False:
 - The current at point E is considerably less than the current at point A since charge is being used up in the light bulbs.

$\mathbf{P} = \Lambda \mathbf{V} \cdot \mathbf{I}$

- $I = P / \Delta V$
- 14. What is the current in a 120-watt bulb plugged into a 120-volt outlet.
- 15. What is the current in a 60-watt bulb plugged into a 120-volt outlet.
- 16. What is the power of a saw that draws 12 amps of current when plugged into a 120-volt outlet.
- 17. What is the power of a toaster that draws 6 amps of current when plugged into a 120-volt outlet.
- 18. What is the current in a 1000-watt microwave when plugged into a 120-volt outlet.
- 19. Your 60-watt light bulb is plugged into a 110-volt household outlet and left on for 3 hours. The utility company charges you \$0.11 per kiloWatt•hr. Explain how you can calculate the cost of such a mistake.

<u>QUANTITY</u>	<u>SYMBOL</u>	UNIT	<u>SYMBOL</u>
Charge	Q	Coulomb	С
Energy	ΔPE	Joule	J
Potential Difference	ΔV	Volt	V
Current	I	Ampere	А
Power	Р	Watt	W
Resistance	R	Ohm	Ω

